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SUMMARY 

A brief method is presented for  estimEbting the speed  response of 
turbo jet and turbine-propeller  engines t o  a step change in fue l  f l o w .  
The method approximates the  dynamic equilibrium in the  gas-turbine  engine 
with a first-order linear different ia l  equation, the tFme constant of 
which varies  inversely with the equilibrium speed. 

For  the  application of the  method t o  the turbojet engine, +he aata 
required are (1) the  variation with engine  speed of the steady-state 
engine a t c  flow and the steady-state compressor t w e r a t u r e  rise; and 

engine, the  variation  with enghe speed of the steady-state-  propeller 
torque is required in addition  to  the data required  for  the turbo j e t  

L (2) the polar  moment of i ne r t i a  of the engine.  For the  turbine-propeller 

\. engine. 
" . . . -. - - . . 

m i n e  time  constants computed by means of ' t h i s  method are compared 
with time-constant data obtained by direct  meaaur&ent of transients on 
three  turbojet engines and two twbine-propeller  engines. The deviation 
of the  calculated  values from the mean experfmental  values is only 
s l igh t ly  greater than the sgread of experhental  data. 

IXPRODUCTION 

Closed-loop automatic control is now being  extensively  applied t o  
the aircraft  gas-turbine engine. As the development of t h i s  type of 
control system for  a new engine is  often  carried on slmultaneously  with 
the development of the engine, experimental data on engine dynamic 
characteristics are not available  during the emly  design  stages of the 
control.  Analytical  determination of engine dynamic characteristics 
therefore haa become increasingly  important. 

I E%perimental studies on turbojet engines have shown that the dynamic 
equilibrium In a turbojet engine may be  closely'approximated by a first- 

transient, the several  variebles such &8 temperature,  pressure, and air 
* order linear  differential  equation and that during the engine  speed 

UNCLASSIFIEE 
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flow,  have B T ~  essentially linear relation  to er@ne speed. The dyndc 
characteristics of the  turbojet engine may therefore  be  determined ana- 
lytic- be  means of  the  steady-state  thermodynamic  relations of the 
engine and the time  constant of the differt+tia&  equation  that  expresses 
the  dynamic  equLlibrium of the engine. A method for obtaining  dynamic 
characteristics  from  steady-state  thermodynamic  relations,  when  the  engine 
time  constant  is known, is  reported In reference 1. The  method  reported 
herein and developed at the NACA Lewi.s laboratory  gives a means of 
estimatingjhz e a n e  time  constant f r o m  steady-state  characteristics 
that  are  readily  obtainable  by themdynamic analysis. 

" 

. .- 

. .  

- .  

. .  

I" 
M 
K )  
m .  

The method  presented  herein  for  estimating  the  speed respome of- . . ,  - 

gas-turbine  engines is based on an approxFmation of coqpressor and tur- 
bine  torque  transients.  Expressions for the  engine  time  constant  are 
derived  from  this  approxfmation. 

. - _  

I 

., . 

A comparison of time-constant  values  computed by this  method with 
time-constant  data  obtained  by  direct  measurement of transients on 
three  turbojet and two  turbine-propeller  engines is_,preseted. The . .  

method  requires o n l y  a brief  calculation and appears  to  be  sufficiently 
accurate for automatic  control  design. 

I . ." 

Lineartty of engine  transient  response. - Analylslis  (reference 2) . 
has shown  that  the  torque  equilibrium in a jet  engine during accel- 
eration may be  expreseed by a first-order line& differential  equation. 
This  analytical  result has been  verified  by  direct  measurement of trans- 
ients on several  engines. A typical  transient  response of a turbojet - 
engine to a step  increase in fuel  flow  rate is ahoyn Fn figure-1. This 
response  is  plotted  as  the  logarithm of the  ratio of the  difference 
between initial and f i n a l  speed to the  difference  between  instantaneous 
and final  speed agdnst time.  The  data fall- quite  prectsely  along a - 

straight  line  having  the  equation: 

. ""3 
I- I 

" 

.. 
- . " - 
" - 

. " . . - -. - 
j .  

Nf - % t = z - a  - N (11 

All symbols  are defhed i n '  appendix A. . . . . . . . . . . . . . . - . . . . . - " 

- 

Reaxranged in the more usd form, equatloh (1) is 

-t/z 
M = N o ( l  - e + Ni e 

.." The  respanse of-a line= first-order . system is given by equation ' 

(La) . This  -response Is described  by  the engine time  constant 7. 
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Transient  torque  relations. - In the  turbojet  engine, compressor 
torque i s  equal to turbine  torque at equilibrium running speed. This 
equilibrium  torque is essentially  proportional t o  the  square of the 
equilibrium speed. The l inear response of the engine to  a step  increase 
i n   f u e l  flow rate indicates that i n  the  trassient,   the compressor and 
the  turbine  torques  depart from the equilibrium cumre in some manner, 
such that the unbalanced torque d - i d h e s  as a s t r d g h t   l i n e  wlth engine 
speed. The compatibility of this  l inear  transient with the nonlineaz 
equilibrium  torque  relation i s  shown in figure 2. In figure 2 the 
initial r i s e  shown i n   t u r b h e  torque results f r o m  the  increase  in  turbine- 
inlet temperature tha t  accompanies a sudden increase in fue l  flow rate.  
The initial rise shown i n  compressor torque results from the  increase i n  
burner-inlet  pressure. The two torque lines are dram =bo converge as 
straight l ines  t o  the new equilibrium  value. The l inear i ty  of these 
transient torque-speed relations has i ts  basis in: ('f the  transient 
response as characterized by figure 1 and equation (la j (2) the lin- 
earity  (during  the  transient) with speed of the  several  variables, such 
as temperature and pressures, as determined by direct  measurement dur- 
ing the transient.  

In  accordance with the torque  transient shown in   f igure  2, the dif - 
ferential  equation  (derived i n  appendix B) that expresses the dpamic 
equilibrium i n  the engine i s  

where 

slope of compressor transient  torque line 

% slope of turbine  .transient.  torque  line 

The solution'to  equation (2) is given by equation (la] i n  which the time 
canstant is  

T. 

Variation of  engine  time constant wlth equilibrium  speed. - V a r i a -  
t ions i n  engine t h e  constant in a given engine axe due to  variations 
i n  the slopes and % as shown by equation (3). These slopes 
vary  over wide ranges KLth changes.in  operating  level of the engine. 
Data on several  engines show tha t   the   vdue  of engine  time  constant z 
diminishes as the  equilibrium speed increases. The relation between 
the value of time  constant and equilibrium speed  appears t o  be  hyper- 
bolic. The difference . % - %  is then  substantially  proportional t o  
the ' equilibrium speed: 
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and therefore - . - 
. "  . - ". 

Equilibrium shaft torque-speed relation. - The determination of I" 

the  slopes % and . KT by any method w i l l  require  the  determination - 

of the  equilibrium  value at which the coxpressor and turbine  transient - 
l ines  converge. For this-reason  expression f o r  the equilibrium 
torque speed relation is derived. 

-; 
. . .- ". ... . . . . . . ."  . ." . -. . . ,-. . .  

. .1 " . 

The torque absorbed by m y  compressor (when specific  heat 5- - is 
assumed constant and f r ic t ion  is  neglected) ia proportional t o  the product 
of the air f l o w  and t h e   t q e r a t u r e   r i s e  divided by the  rotational speed. 
This relation i n  terms of consistent  units i s  

. . " 

Equation ( 6 ) c m  be rewritten as . 
4 

" . . .- " .  

Qc = 2 (+)(d "TC N2 
I 

The terms W/N and &+/RZ remain substent ia l ly   constet  in a 
given engine over a wide speed range. The equilibrium shaft torque- . . .  

speed relation  .ia.  therefore  essentially a squared curve and may be 
written 

.. - ,. ._ . . -" 
,, .. - . . . .  

. .. - . ." . .. "_ . "" 

- . . . . " 

% = % N 2  

Derivation of Method 

Basic approximations. - It has been  deduced from experbnental 
observation that  the compressor and turbine transient torque-speed 
l ines  m e  es-sentially  straight and that the  tine  constant of the speed 

"" 

LC 
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response is  essentially  inversely  proportional  to  the  equilibrium speed. 
The slopes of the two transient  torque  lines may therefore be, re la ted  
(equation (4) 1 and a relation may be written f o r  the  intersection of the 
two lines (equilibrium  torque,  equation (7) ) .  These relations  are  insuf- 
f ic ien t  t o  evaluate  the term -KT. If, however, the  relation of 
equation (4) can be considered t o  be valid at a l l  equilibrium  speeds, 
it is  necessary to   f i nd  on ly  one specific  configuration of the  transient 
torque  lines  that can be related t o  the  equilibrium  torque  relation, in 
order to obtain a solution f o r  the term - K$ that w i l l  apply at Ebu 
equilibrium  speeds. 

As previously  discussed,  the initial rFse Fn turbine  torque  results 
from the  increase i n  turbine-Met  temperature tha t  accompanies a sudden 
increase i n  fue l  flow ra te .  The r a t i o  of initial torque  rise t o  the 
f ina l  torque r i s e   ( f i g .  2) increases as the  equilibrium speed i s  
increased. ThLs increase i n  the torque  ratio  results from the sharp 
rise in the magnitude of the   fue l  f low change fo r  a given  increment of 
speed change at high equilibrium  speeds. In  general, t h i s   r a t io  will 
be less than uni ty  f o r  low values of equilibrium speed and greater than 
unity  near maxFmum engine  speed. A t  some Fntermediate  value of equi- 
librium speed, t he   r a t io  will be  unity. In az1 acceleration t o  t h i s  
speed, the  slope of the  turbine  torque  line IS$ will be zero. 

Ebpirical  relations. - I n  an acceleration in  wbich the slope of the 
turblne  torque  line IC, i s  ze ro ,  it follows from eqwtion (4) that the 
slope of the compressor torque l i ne  K& is proportional to  the  equilib- 
rium speed. These.conditions  ere expressed a8 

K T = o  

Kc = mf 

where K is the  constant of equations (4) and 

As developed i n  appendix C, the spread of 
i s  

2 
B - A = K N T  

From equation (7)  

Qf = Kq N f 2  

follows : 

(91 

(10) 

(5) 

the  intercepts (fig.  2) 

The constant K may then be related t o  the  constant of the equi- 
librium  torque  curve Kq by a dhiensionless factor. 

K = %  



6 - NACA RM E51K21 

The value of the dimensionless  constant n has been determined - 
from the measured regponses of several engines. The.vd* of n used 
i n  this report l m t y ,  which is  coneistent  with all avelab le  kt&. 

- 
. .  

The value of n = l  fixes  the  intercept A at  the origin of t h T  
equilibrium  torque line ( f ig .  2) . The final expression for  the engine 
time constant-fs then . .  

Altitude and ram corrections. - From equation (8) 

The altitude  to  sea-1eveLcnrrectlon on the   cons ta t  K, i s  . = -  
Y. 

derived from correction on the term 
. " 

. 
This correction _and the carrectinn.oa N-f applied t o  equation (12) " 

yield the.. cclrrected-value of time constant . .  . - . - . " ." . . -  

This  correction is i n  agreement vi th   that  found by the analysis of ref- 
erence 2. The correction is also verified by experimente i n  reference 3. 

. .- . 

As expressed, i n  equation (81, the  effect  of ram on the engine  time 

constant is determlxed by the effect of  ran on the term : - 
This effect may be  determined by analysis such as that given in 
reference. 5. -: - 

(3 ($* 
. -. 

" - - - " "  - -- "" - . - . . . . . . . - - . . . . ." . " - - . . . .. . - .. . - - - ." . " .   . "  . .   . .  . _" - .  

Calculation of turbine-propeller  engine-time  constant. - In  the . . - 

turbine-propeller engine, %he equilibrium  torque (measured at the tur-. . 
bine) is the sum af the propeller and the compressor torques. The 
apeed resgonse of. tET?rtype of engine ha8 been found t0 .be essentially 
linear  .(references 3 a d  5) i It can therefore be assumed that the  torque 
transients of the compressor and the turbine are similarto the torque 

. . . . . . . - 
. . " - - 

. " 
. -. 
0s 
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transients in  the turbo3e-b engine. The steady-state-and  transient 
torque-speed relations of the  propeller are the same. The transient 
propeller  tarque i s  therefore  essentially  proportional t o  the square 
of engine speed. This transient  nonlinearity is not sufficiectly  large,  
however, t o  cause the speed  response of the engine t o  depart from a l in -  
e m  response. 

I n  the  application of this method of estimating  the speed response 
t o  the  turbine-propeller  type engine, it is considered adequate t o  
approximate the  transient torque-speed relation of the  propeller by a 
linear  relation;  the  slope of which is  equal t o  the  slope of the equi- 
librium  torque-speed relation at the final speed. The equilibrium 
torque at fixed  bl& angle i s  considered t o  be proportional t o  the 
square of engine  speed 

The slope of the torque-speed relation at the final speed 
is  then. flcp Nf. . 

On the  basis of these approximations, the  different ia l  equation 
(derived i n  appendix B) tha t  expre'sses the d;ynamic equilibrium i n  the 
engine i s  

The solution t0 equation (15) is  given by equation (la) i n  which the 
time constant is 

In accordance with  the approximation- of this method, when 

When these  relations &e substituted i n  equation (16) the  relation reduces 
to  



RESULTS AND DISCUSSION 

Comparison of measured and calculated-"tW  constants. - Results of 
computations--of  engine  time  constant de by the method described  herein 
and the mean experimental  values for three  turbojet engines are  presented 
i n  figure 3. (A saaple  calculation i s  presented in appendix C. 1 The 
equilibrium shaft torque and engine  speed w e  af.the engine is  shown 
i n  the upper part of figure 3. The circled  points shown on theeequilib- 
rim torque  plot  are.the  values computed from steady-state measurement 
of compressor air flow, temperature r ise ,  and speed. The curve shown on 
the  equilibrium  torque  plot i s  the mean squecred torque-speed relation 
baaed on the  values of the  c i rc led  points .  The torque points are in  
good agreement with .the  squared  curve. The sol id  curve shown on the .. 

time  constant plot  is the hy-perbola  computed by means of equation (12) 
from the mean squared torque  curve. The circled.points are the tlme 
constant  values computed from the  circled  equilibrium  torque  points. 
In the case of the circled time constant  points,  the squared equilibrium 
torque curve i s  therefore considered. t o  .paas t&o@ the,.particular  equi- 
librium  torque  point, This procedure may be of value Fn regions where 
the equilibkium  tarque curve deyiates  appreciably from a consisterit 
squared relation. The dashed l ine  shown on the the constant plot  i s  
the average  experimental  value. T h e .  data f r o m  w h i c h  the mean experi- 
mental  curves were drawn showed a spread of approximately k20 percent. 
The maximum deviation of the  calculated  values is  between 25 and 30 per- 
cent. In . the  three..campasisons of experimental and calculated  values, . 

the calculated  values f a l l  both above and  below the experimental  values. 
It i s  on this basis  that- the va;lue of unity  for  the  dimemionles~ con- 
stant n was derived. 

. . . . . . . . .  
. . . . .  . . . . .  
" 

Results  obtained for two turbine-prapeller engines are  presented - 
.... in  f igure 4. A comparison of measured and computed time constants for 

three .blade-.mgle settings i s  shown i n  figure 4(a) f o r  t kb ine -  
propeller engine A. The effect of blade angle on the computed~values 
of time constant is greater  than the effect  Fndfcated by the  experi- 
mental values.  The-deviation of the calculated  values from the mem 
experimental  values is, nevertheless, approximately the same as was 
indicated.for the turbojet engines. 

. .  
- "- 

. . .  " 
- " 

. . . .  . .- 
. ". 

. .  

The weement between  computed values of time  constant and a meas- 
ured value on .a second turbine-propgUer. engine Ts shown in   f igure 4(b) 
' f o r  turbine-propeller engine B. . In t h i s  irlstance, .the experimental 
v&ue was obtained by the frequency-res$owe technique. The-data on 
all the  other engines were obtained by the  step  technique. 

" 

. - .  
. . .  ". 

I - .". 

Similarity of engine time.constmts. - The values of engine  time 
. . . .  constant f o r  the  three  turbo jet. engines shown in .figure 3. are.  nearly 

equal a t  maximum engine  speed. -. "It ..... is  note-worthy . . . . . . . .  that this  equality - c  
. . . . .  . . . . . .  - . 
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. .  
exists in  the face of substantial  differences  in the inertia,  the  torque, 
and the speed  range of these  engines. The values of these parameters 
are listed i n  the following table. 

I 

A 16.30 7,794 

ll,5CR3 
12 , 500 

Torque 

constant speed maximum 
time maximum at 

Measured W/Q at 

speed at 
Q maximum 

(lb-ft)  speed 
( s 4  

8955 

1.2 14.15 4410 
1.5 13.68 W 9 2  
1.9 14.16 

f 

Computed 
time 

constant 
at 

mBximum 
speed 

1.4 
1.6 
1.5 

Transients of large magnitude. -. The values  of engine time  constant 
conputed,by the method  of this   report   me Independent of the magnitude 
of the transient and are a function  only  of.the  equilibrium speed. The 
experimental  data from which the  time  constant  curves of figures 3 and 
4 were  drawn  were obtained with s m a l l  changes i n  fue l  flow rate. Data 
available at present  are  FasuffTcient to determine either the lfmit of 
l inear i ty  of engine response o r  the dependence.of the  time  constant on 
equilibrium  speed.  alone  during transients of large magnitudes. 

CONCLUDING FEBURK3 

Experimental data indicate that the speed response of  turbojet 
and turbine-propeller  engines-is essentially l inear  and first order 
and therefore  the concept of time constant may be used to  aescribe  the 
speed  response of such engines. Also the  value of the time  constant 
is indicated to be iwer se ly  proportional. t o  the equilibrium speed. 

An analysis, based on the concept of an equilibrium shaft torque 
tha t  i s  proportional t o  %he square of engine speed, shows that the con- 
s tant  of the equilibrium torque-speed relat ion e be re la ted   to  the 
constant of the time constant-speed relation. Experiment shows tht 
these two constants may be equated. The e r n e  t.ime constant  pay there- 
fore  be computed from the  steady-state  shaft torque-speed relation of 
the engine. . .  . .  - .. . 



A comparfson af engine tlme  constants computed by this method with 
time constant  data  obtained by direct. measurement- of transients on three . . - -- 
turbo  jet  and two turbine.-propeger. engines. -shows that..the  deviation o f .  . 

the talc-ulated values f r o m  t h e  mean experimerrtal values is only s l ight ly  
greater  than  the  spread of .experimental data.. .. . . . . ... - - - 

Ir" 

. :-=- .- 

Lewis Flight Propds ion  Laboratory 

Cleveland, Ohio 
N a t i a n a l  Advisory Committee fo r  Aeranautics -. - m  

" . 
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SYMBOLS 

The following symbols have been  used in this report: 

AJB,C,KJN C O I I S t a I I t S  

“p average specific.  heat .of gas passing  through compressor 
(assumed to be 0.243 Btu/(lb) (9)) 

11 

I 

J 

polar moment of i n 2 t i a  of ent i re  engine (related to engine 

mechanical equivalent of heat, 778 ft-lb/Btu 

speed), lb-ft see 

N engine  speed, rpm 

time derivative of engine  speed 

Q torque, lb - f t  

T temperature, OF 
t time, sec 

fsr tpslperature rise, “F 
w engine air f b w J  lb/sec 

6 ambient static  pressure 
NACA standard  sea-level  pressure 

8 anibient s t a t i c  temperature 
NACA s t anbzd  sea-level‘  temperature 

z engine  time am6tantJ  sec 

Subscripts: 

a al t i tude 

C compressor 

torr corrected 

f . f i n a l  
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i 

P 

q 

1. 

(t) 

B 

i n i t i a l  

propeller . .  . .  . . - . . . .  . - - . 

compressor (when applied t o  equilibrium  torque  constant) 

turbine . .  . . .  . . . .  . . . . . . . .  . 

denoting instmltazleoua value Wing transient . . .  

blade angle , . -  ,: " ... 

4 

ri; 
. . .  . .  

. .  
-..j_ w 
"I-' - 

" 

- -. 
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Turbojet  engine  (equation ( 2 ) ) .  - In accordance  with figure 2, the 
instantaneous  values of compressor and turbine  torques durfng the speed 
transient may be written: 

%(t) = Kc + A  

when 

N = Nf 

%(t) =I QT(t) = Qf . . .  

substitution of these  values in equa%ions (Bl) and (B2) yields 

A = Q - % N f  (=(a1 1 

substitution  again fn equations (Bl) and (B2) gives 

%(t) = Kc + % - Kc Nf (133) 

QT(t) = KT + Qf - % Nf (a) 

The dynamic equilibrium  during  the  transient is 

Substitution of equations (B3) and (B4) in (B5) and rearranging  terms 
gives 

+-  (KC - %IN = (Kc - $)Nf (B61 

Turbine-propeuer engine (equation (15)). - The compressor and the  
turbine  torque  transients are assumed t o  be the same i n  th i s  type of 
engine &B i n  the turbojet engine.. The instah-t;aseous values of compressor 



and turbine  torque are thqefore  expresses by equations (Bl) and (B2), 
reapectively. The t rms ien t  torque-speed .relatian of the propeller i s  . 
a p p r o x i t e d  by a linear  relation,  the .slope of w h i c h  is equal t o  @ope 
of the equilibrium  tarque-speed  relation - at the final speed. The .equi- 
librium  torque-speed relation at fixed blade angle is approximated by 
a squared s d a t i o n .  , I Therefore - .. . .  . . . . . . . .  - . - . .  

Q P = $ N 2  

The slope of the  l inear  relation that approximates the  transient is 

The l inear  torque-speed relation i s  then 

Qc(t) = Qcf 

Substituting  these  values in .equations (Bl) , (B2), and (B7) gives 

,- .. - " . .  

.. 
.... 

Y _. 
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. The dynamic equilibrium &in@; the transient i s  

Substituting  equations (B), (BS), and ( R l O ]  in equation (B11) and 
emplosng the  relation . . .  
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APPENDIX c 

RELATION BEZWEEN INTERCEPTS OF TRAEJSIENT 

From equatians (Bl(a)) and (BZ(a)) of appendix B 

% B  %=Nf-g 
From these expreseiorm - 

" .  . . . , I  
. I  

NACA RM E5UCZ1 

Combining thia,.rela$i.on with equation (4) gives 

B - A = K N f  2 

. .. 
. .  

' (c2) 
. "" 
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SAMF'LZ TIME-COWSTANT CALCULATIONS 

. .  

17 

Turbojet engine. - The steady-state engine data for   the  turbojet  
engine axe: 

-ne air flow, W, lb/sec . . . . . . . . . . . . . . . . . . .  80 
Compressor temperature rise,  AT^, OP . . . . . . . . . . . . .  350 
Ehgine speed, NJ r p m  . . . . . . . . . . . . . . . . . . . . .  11,500 

The polar moment of inertia I of the engine i a  5.43 pound-feet 
per second per second. 

According t o  equation (6) the  equilibrium  sh&t  torque i s  

= 18ll 3 lb - f t  fl 

From equation (7)  . 

2 -  
2 

2 

K =  = 3.05 x 10-3 l b - f t  sec2 

From equation (12) 

z 

z 

2 

" - 5.42 
3.05 X IQ 

7 =  17Jm0 = 1.48 sec 
11,500 
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Wbine-propeller engine. - The steady-state engine data f o r  the 
turbine-prapeller engine -are.: 

s 
." - - - " .... . ..... .... . .  . . - . . _" " 

Engine air flow, W, lb/sec . . . .  . . . . . . . . . . . . . . .  51.39 
Compressor temperature rise, A T c J  % 398 
Ehgine speed, N, rpm . . . . . . . . . . . . . . .  i . . . . . . . . . .  8040 
Propeller  torque, Qp, lb-Ft 1920 

. "  . . . . . . . . . . . . . .  
.. 

% 
. . . . . . . . . . . . . . . . . . .  

The combined polar moment  of iner t ia  I of engine and propeller 
is 10.68 pound-feet.per second per second. 

From equation  (6) 

18U X 51.39 X 398 = 4600 lb-ft 
Q c =  8640 

From equation (7) 

... 8 
i; 

Kq = 4600 (2 .  = 6.48 X lb-f% sec2 
(804012 zfl 

From equation (14) 
2 

Icp = 3 (E) l b - f t  sec2 

1920 

(8040 1 
2 

~p = -2 (g) = 2.7 x 10 -3 lb - f t  sec 2 

(% f %) = (6.48 + 5.4) X10'3 = 11.88 X low3 Ib-ft  sec 2 
. .  

From equation (17) -~ 

7=-- - 1.07 sec 
8040 
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Turbine transient 
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Figure 2. - Representative torque variations  during 
turbojet engine speed  transient. 
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0 Calculated f r o m  steady- 
state  compressor  data 

(Q = 12.94 N2 X 

- Mean squared  torque-speed  relatio 

0 ,  

0 Calculated from corresponding 
steady-state  torque  point 

4 
Average  experimental value 

2 

0 
7 000 

- Corrected equilibri&L engine  speed, N, rpm 

(b)  Turbojet  engine BJ polar  moment of inertia 
2.40 pound feet per second  per  second. 

Figure 3. - Continued.  Variation of equilibrium shaft torque and engine time 
constant  wlth  engine speed in  tukbojet  engine  at  sea-level  static  condltions. 
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. 

Corrected  equilibrium  engine epeed, N, ?&a 

(c) TurboJet  engine Cj polar moment of i n e r t l a  
5.42 pound fee t  per second per second. . ' ,. 

Figure 3. - Concluded.. Var'iation of equilibriinu S W t ;  k-rque- and- e n g i n e '  T . ' T  . -  
. .. " 

time constant  wfth  englne speed in turbojet engine a t   s e a - l e v e l  static 
conditions. 

. -  - 
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state compressor tor&e point anb 
21' propeller  torque curve 

Calculated f r o m  mean squared  torque 

8000 9000. 1u,ooo lI,OOo 12,000 13,000. 
Corrected  equilibrium  engine speed, N, rpn 

C 

(a)  Turbine-propeller e w n e  AJ for   three blade a+glesI 
combined polar moment of iner t ia  of engine and 
propeller, 4.55 pound f ee t  per sekond per second. 

Figure 4. - Variation of compressor and propeller  equilibrium  torque and 
engine time constant  with  engine speed in  turbine-propeller engine at 
sea-level static wndftione. - I 
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.. . 

. .  

0 Calculated f r o m  corresponding steady 
s t a t e  comprebsor torque pzdnt and 

2 

1 

0 
6600 - 7000 7400 1800 ..  .. 8260. - . 8600 

Corrected equil-lbrlum engine  speed, IT, rpm 
. -  . .,. 

- 

(b) Turbine-px%pell&& engine B j  blade an&le; ?15.'4~~ combined 
polar moment of iner t ia  of engine wd propeller,' 10..68 pound I - .  

fee%. per .semnd per Eecond. . .  
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